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1. INTRODUCTION

Let 'iTl: a = X o < Xl < ... < x,w = b be a partition of the interval
11 = [a, b]. For p > 1, let S2 P(I1 , 71"1) be the set of polynomial splines of
degree 2p - I defined on '71"1' Let F'PJ[a, bJ = {f [FP-ll is abs. cant.,
P,,) ED[a, b]} and let r::

1
denote the linear projector on Pl1J[a, b] which

associates with each f E Fe p) [a, b1 the unique element I~f of S2P(Jl, 771)

satisfying

i = 0,... , 1~1,

i= O,M; j == O~ ... ,p - i.
(Ll)

It is well known [4] that Itf uniquely minimizes
1

.bJ [v\P)(x)]2 dx
a

among all v EF(PJ[a, b] satisfying

tl. 2):

Vex;) = teXt),

vril(x;) = f(j)(x;),

i = 0,... , AI,

i = 0, M; j = 0,... , p - 1.
(1.3)

Let R be the rectangle 11 X [2 = [a, b] X [e, d] and let 71" = '71"1 X fl2 be a
partition of R into subrectangles. The previous result can be extended by
tensor products obtaining a linear projector [:,2 with range

having the property that the spline interpolant determined by this projector
can be characterized by variational properties.
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Let L be the L-shaped region shown below and let c<r,s)(L) be the class of
all functionsfdefined on L withpi,j) continuous on L, 0 :0:;; i :0:;; 1',0 :0:;; j :0:;; s,
where the superscripts indicate partial derivatives. Let S2 P(L, 17) denote the

a

FIGURE 1

b

subspace of piecewise polynomials, or splines, on 17 which are of degree
2p - 1 in both variables and which belong to the class C<2 P-2,2V-2)(L). The
purpose of this paper is to determine a linear interpolation projector 1;:.L onto
S2P(L, 17) having the property that the spline interpolant determined by this
projector can be characterized by variational properties, thus providing an
extension of the univariate result to L-shaped regions. This extension is
achieved by noting that spline functions are representers of appropriate
bounded linear functionals in an appropriate Hilbert space. It also depends
in an essential way on the extension by tensor products of the univariate
result to rectangles. Our construction of the projector r::,L provides an
indication of how to proceed in the case of a more general rectangular
polygon /Jli to determine a spline interpolant which can be characterized by
variational properties. We include an outline of this extension in Section 6.

The problem solved in this paper has also been considered in [2] and [6].
The authors of [2] were not able to find a linear interpolation projector onto
S2P(L, 17). The authors of [6] succeeded in finding such a projector, which is
in fact simpler than the one determined here. However, the interpolation
scheme determined by their projector [6, Theorem 3] is unstable in the sense
that spline interpolants to a smooth function need not converge as the mesh 17
is successively refined. For the bicubic case the authors of [6] succeeded
[6, Theorem 9] in determining a stable interpolation scheme on an L-shaped
region but their scheme is ad hoc in the sense that it seems to provide no
indication of how to proceed to determine stable interpolation schemes for
higher degree splines or for other rectangular polygons.

It also would not appear that the spline interpolants defined in [6] can be
characterized by variational properties. In this author's opinion, the
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minimization property is an important property of odd-degree interpolatory
splines of one variable and should be preserved in any extension of the theory
of these splines to more than one variable. For example, the minimization
property for univariate splines immediately implies a best approximation
property from which one can prove the uniform convergence of interpolatory
splines of degree 2p - 1 and their first p - 1 derivatives to moderately
smooth functions. (See [1, Theorem 5.9.2].) As will be seen, the minimization
properties obtained for spline interpolation on the rectangle and the L-shaped
region also immediately imply best approximation properties from which
one obtains analogous convergence results. (See [9, Theorem 5].)

We shall find it convenient to adopt a standard notation to use when
referring to linear functionals associated with interpolation to derivative date..
We shall denote by 8~j) the rule which assigns the value Pj)(~) to the function
f E CUl [1] where I is the interval of the real line indicated by the context. For
j = 0, we shall usually omit the superscript.

2. SPUNES AS REPRESENTERS OF BOUNDED LINEAR FUNcnONALS

IN HILBERT SPACE

In [5], de Boor and Lynch give general results concerning representers of
bounded linear functionals in Hilbert space. We restate some of their resuli:s
in the following

LEMMA 1. Let H be a real Hilbert space. Let F" i = 1, ... ,11, be any
linearly independent set of n bounded linear fUl1ctionals defined on H. Let ?i
be the representer of Fi , i = 1, ... , n, i.e., EJ = (f, rPi) for fE H, and fet

S = <rPl ,... , rPn>· ForfE H let Psf be the orthogonalprojection offonto S Then

(i) Psf is the unique element ofS li/hich interpolates f with respecT to the
F, , i = 1, ... ,11;

(ii) of all elements g E H such that Fi g = FJ, i = 1, ... , n, Psi has the
minimum norm.

We would like to relate the variational property of odd degree interpolatory
splines to Lemma 1. To do this we define an inner product <., on FLI') [a, b]
having the property that minimizing <v, [')1 over all v E Wf , ""here ~Vf is the
set of all v E F< p) [a, b] satisfying (1.3), is equivalent to minimizing (J .2) over
all [' E Wf • The inner product

<f, g)l = rf(Pl(X) g(P)(x) dx + I f(j)(a) g(j)(a) {2.l)
a j<p
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has this property, and as was shown in [5], p<p)[a, b] is a Hilbert space with
respect to (2.1). Let 51 be the subspace of representers with respect to (2.1)
of the linear functionals

A = f8 l.M u {8(j)l P- l U {8(i)}P-l
1 l xi! 0 a 51 b 1 . (2.2)

By Lemma 1, the orthogonal projection Ps foffE p<Pl[a, b] onto 51 minimizes
1

<v, V)I' or equivalently (1.2), among all v E Wf • Thus Ps f = If: f. This
1 1

together with the fact that dim 5 2P(11 , 7Tl) = dim 51 implies that
51 = 52P(11 ,7TI), i.e., the subspace of representers 51 is identical to the
subspace of splines 5 2P(11 , 7Tl)' This observation will be important in the
extension of these results to rectangular polygons.

3. EXTENSION BY TENSOR PRODUCTS TO RECTANGLES

Let R = II X 12 = [a, b] X [c, d]. We define a norm on RP.P =

p<Pl[a, b] @F(p)[c, d] and then complete RP,P with respect to this norm to
obtain a Hilbert space. First, F(P)[c, d] is a Hilbert space with respect to the
inner product

<I, g)2 = r j<P)(y) g(Pl(y) dy + L f(j)(c) g(j)(c). (3.1)
e i<p

For fE RP.P, we have the expansion

f(x, y) = (Ta,p @ Te,p) f(x, y) + [(1 - Ta,») @ Te,v] f(x, y) (3.2)

+ [Ta,p @ (1 - Te,v)] f(x, y) + [(1 - Ta,v) @ (1 - Te,v)] f(x, y)

where Ta,v is the linear projector onto g;p-l , the space of polynomials of
degree p - 1 or less, defined by

and Te,p is defined similarly. Thus

(I, g) = [I, g] + L L f(i,j)(a, c) g(i,i)(a, c)
i<p i<p

where

(3.3)

(3.4)

b ra b
[f, g] = { . e f(P,P)(x, y) g(P,P)(x, y) dx dy + it { f(P,il(x, c) g(P,il(X, c) dx

+ L r f(i,V)(a, y) g(i,V)(a, y) dy. (3.5)
i<p C
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is an inner product on RP,p. Note that [f, 1]1.'2 is a seminorm with null space
&p-l ® g;p-l • In [8] it is shown that the completion R~'P of RfJ, P with respect
to (3.4) is the class offunctions with the properties:

~ (j)r(p-l,o)' b t
dc J IS a s. con .,

;;(i1(O,P-l)' b t-a. IS a s. con "

jU,j) E C[R], i <p, j <p,
8~i)f(o.p) E L 2[a, bJ,

8~)f(o,p) E L"[c, d],

j = O"",p - 1,

i = O~ .. <:,p - 1,

/'P-l,P--l) is abs. cont., Pp,p) E P[R].

For the partitions 7T1: a = X o < Xl < ... < X,H = band 7T2: c = Yo <
)'t < ... < YN = d, we consider the set of linear functionals L1 defined by

(3.6)

where .Ill is the set of linear functionals on Pp) [a, b] defined by (2.2) and .1" is
the set of linear functionals on F'P)[c, d] defined by

A = {" }N U f,,(j)lP-1 I : (~(jhp-1
2 0 Y j 0 lO c J 1 ......... l O Ii' /1 . (3,7)

With 11 = 7T1 ® 112, let 1;',2 = 1;, ® T:
2

be the linear projector onto S2 P(R, 11)

where 1;1 is the linear projector onto S2 P(ll , 111) defined by (1.1) and L!:, is
defined similarly. We remark that the spline interpolant determined by 1;,2 is
just the bicubic spline of [3].

THEOREM 1. LetlE R~'P and let

r = {v E R'f:,1J [ Ao = V, 0/1 ,\ E A}.

Then r!;'Yuniquely minimizes [e, 0] among all vET.

Proof. First we note that because of the structure of the inner product
(3.4) minimizing [e, v] among all v E r is equivalent to minimizing (r, v)
among all v E 1'. By Lemma 1, the function that minimizes (e, v) among all
l' E r is the unique element in S, the subspace spanned by the representers of
the set ./1, which belongs to 1'. Let A = ;\ cg: ;\z E"l and suppose </> is the
representer of A with respect to (3.4), </>1 is the representer of Al with respect
to (2.1), and cP2 is the respresenter of A~ with respect to (3.1), Then for all
IE RP,P

where the subscript indicates that the inner product is taken with respect to y

for fixed x. But since R1'.P is dense in R~'P, ,V = ct, ¢lcP2) holds for aU
1E R~'P and cP = cP1 rp~ •
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This, together with the discussion following Lemma 1, implies that
S = S2P(R, 7T) and the theorem is proved.

Remark. The inner product (2.1) is not the only inner product involving

.b
J fCP)(x) g(Pl(X) dx

a

which can be defined on the linear space p!p)[a, b] to make it a Hilbert space.
Clearly the set of functionals {8~i)}g-1 in the finite sum can be replaced by any
subset {G..}j' of .11 , which are linearly independent over g>11-1' This
replacement in (2.1) has no effect on the variational problem which character
izes If: g, g E F!11)[a, b]. It does, however, affect the variational problem of
Theor~m 1 in that the substitution of {GJi for {8~i)}g-1 results in a change in
[v, v]. Thus /::,2j, jE Rf,11, can be characterized by a finite set of similar
variational problems.

4, EXTENSION TO L-SHAPED REGIONS

Let L be the L-shaped region of Fig. 1. Let LP,11 be the class of functions
with the properties

jU,il E C(L], i < p, j < p,

8~i)j('lJ-1.0) is abs. cont., 8~i)j(11.0) E L 2 [a, b],

8~i)j(O'11-1) is abs, cont., 8~)f(O,p) E L 2[c, dl,

j(11-1,11-1) is abs. cont. on Ri , j(P,11) E L2[Ri ],

j = O, ,p - 1,

i = O, ,p - 1,

i = 1,2,3.

(4.1)

where R1 = [a, ex] ® [/3, d], R2 = [a, ex] ® [c, /3], R3 = [ex, b] ® [c, /3],
We now show that LP,p is a Hilbert space with respect to the inner product

(1, g)* = [1, g]* + L L j(i,})(a, c) g(i,})(a, c) (4.2)
i<p i<11

where

[f, g]* = f f j(P,P)(x, y) g(P,P)(x, y) dx dy + I rfC 11 ,il(X, c) g(11,il(X, c) dx
L 3<P a

+ L rjU,11)(a, y) g(i,p)(a, y) dy. (4.3)
i<p C

With

(4.4)
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the "blend" of Tu,p with T{3,p , we define the map E on D',i' by

£1'= ifon L,
:J ITfon R\L.

Since for allfE LP,P

105

(Tf)li,O>(o:, y) = j<i,O)(C\, y),

(Tf)(O·j)(x, f3) = flO,j)(x, f3),

o :s;; ; :s;; p - 1,

o :s;; j ~ p .- 1, XE [:x, b],

EfU,}) E erR], ; < p, j < p and E has range in R~·p. Note that Tf is a"
example of a blended interpolant introduced by Gordon [7]. Since (EjY' P 0== 0
on R\L, (4.2) is an inner product on LP,p. Hence E is a linear, inner product
preserving map having as a left inverse the linear and norm reducing map F
given by

Therefore LP,P is a Hilbert space with respect to (4.2), L",P being isomorphic
to the closed subspace E[LP'P] of R~·p.

Our objective is to find a set jl of linear functionals with the property that
the linear projector Ij,',L onto S2P(L, 17) determined by Jt~f has tbe property
that forfE LP,P, I;'.d uniquely minimizes [v, v]* among alI l' E D"V satisfying

all p- E .If.

Here 17 denotes the restriction of the partition 171 @ 'T.2 to L. We assume
0: = XM

1
and ,8 = XN

1
' In [6J it is shown that

dimSI''(L, 17) = 111 = K + 2(p - l)(M + N +- 2) -;- 4(p - 1)2 (4.6)

where K is the total number of mesh points. Lemma 1 shows that it is sufficient
to choose m linear functionals defined on LP,P with the property that their
representers span S2P(L, 17).

Let Abe a bounded linear functional on R~' P with representer cp. Then ),E is
a linear functional on LV.p. In addition

(I.E)! == A(Ef) = (Ef, if;) = (f, rp !L)*, aLl fE [P,p. (4.7)

Thus I.E has representer if; IL • This implies that the set of functionals

(4.8)

all have their representers in S2p(L, 17). We choose jl to be a subset of In

elements of A E whose representers span S2P(L, 17); or what is the same thing,
a subset of 111 elements of AE which are linearly independent Dver LP.p.
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Let Q be the linear projector on R~'P with range E[P'P] defined by

Q = EF.

As Q is also norm reducing, Q is in fact the orthogonal projector of R~'1' onto
E[L1',1'], The set of linear functionals

,/110 = {AE \ AE.l1 and AQ = A} (4.9)

is clearly linearly independent over L1',p. The set JI!o includes the functionals
associated with: (i) interpolation to values at each mesh point of L; (ii) inter
polation to the first p - 1 normal derivatives at each boundary mesh point
of L which is also on the boundary of R; and (iii) interpolation to cross
derivatives at the three corners of L which are also corners of R.

Now let .11' be the subset of A containing the functionals

8(i) 08
b ~ Yj'

o 08(j)
Xi 'C) d,

oii) ® 8J1>,

i = 1, ... ,p - 1; j = N1 + 1'00" N,

i = M l + 1'00" AI; j = 1,00.,p - 1,

i=l,oo.,p-l; j=l,oo.,p-l.

(4.10)

We take as the remaining functionals

,/111 = {AE [ AE A'}.

It is straightforward to check that the set of m elements of /IE

JI( = J/o U vitI

is linearly independent over L1',p.
This proves

(4.11)

(4.12)

THEOREM 2. There exists a linear projector I/:'L on L1'·1' with range 5 21'(L, 17)
which associates with each fE L1'·p the unique element I/:'L f in Sp(L,17)
satisfying

all !L E oft

where vi! is the set of linear functionals defined by (4.12). Moreover, Il"J
uniquely minimizes [v, v]* among all

V E r = {v E LP.P i fLV = fLf, all fL E vlt}.

We conclude this section with the remark that if the functionals {8~)}~-\

(or {O~j)}C-l), are replaced in (2.1) and (4.2) by the set {G;}j' , ({Gim, where
{GiH ,({G\m, is any subset ofp linear functiona1s of the set {S~)}~-l U {S,,)~,
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{O(Cj)}g-1 U {oy)D, which are linearly independent over 9 1H , the methods
of this section give the same linear projector I;;,L . Thus the spline interpolant
I.l;,r!, like I.!/'''i on the rectangle, is actually characterized by a finite set d
similar variational problems.

5. REMARKS ON THE CALCULATlON Of I;/,Lf

The linear projector I~>,L of Theorem 2 is given by {Si}~~ and {fLi}~' where {s<1t'
is any basis for S2J'(L, 7i) and {IL!};' is any set of rn functionals wJ-1jch span ",I'l,
i.e., for anyfE D',v, r:',r! can be determined by solving the linear system

'rfl

L fLiSj = JLJ,
i=l

i = 1, ... , m.

The purpose of this section is to replace the complicated set of functionals viI;.
by a simpler set Jt/ so that./lt is spanned by the set •.fto U Jt l '. For clarity
we restrict ourselves to the bicubic case (p = 2). Similar simplificatiOIis can
be made for general p.

We first replace (ObI) @ Dy)E by

." _ (C'h) ,~;:, )E' (. (.1)(>:<1) ~-" sJl)\T: (d,) = C' '
f-Lk - OfJ \y U Yk - Yk - fJ, \VlJ (c) Ud .J.L.. - \'Vb \e./ 0/3)~

Thus the ILk" are defined by

01/'1 = f(1,O)(ex, h) - pl,O'(rx, (3) - pl,l'(o:, d)()'k - (3),

all fE [p,P, k == N~ + 1,... , N. (5.l)

With Ti'lv1+l = P,';.;1+1 and Tik" == ILk" - P,~-I' k = N 1 -+ 2, ... , N, we fin.ally
obtain the set {Ti.d;~1+l where Tik" is given by

fik"! == jCl,O)(o:., Yk) - pl,O)(CX, YIH) - (Y." - Y1H) pl,l)(ex., d),

all fE V,P, k = N 1 + 1,,,., N. (5.2)

Analogously we obtain the set {Til};t+l 'where {'i/' is given by

filf = PO,ll(Xk , (3) - PO'])(Xk-l , (3) -' (x,;; - Xk-I) P~''..)(b, !J),

all fE D',P, k = MI...L 1, ... , M. (5,3)

We take Jill' to be the set

JIll' = {Tilc"}f;;l-i-l U {iil;'t~l+l U {p'IJ}

where !-"o = (Dbl
) ® D~I))E is given by

P,of == pI.11(b, (3) + pl,l)(CX, d) - pl,I)(Ci., !J),

(5.4)

aU fE P,p. (5.5)
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6. EXTENSION TO GENERAL RECTANGULAR POLYGONS

Let PA! be a rectangular polygon contained in the rectangle R =
[a, b] X [c, d]. In this section it will be convenient to define a slightly different
inner product on RP,P than was used in Section 3. On RP,P we define the inner
product

where

P P

(I, g) = [I, g] + L I j(x; 'Yi) g(Xi ,5'1)
i~l j~l

(6.1)

.b a v b

[I, g] = J f j(P,P)(x, y) g(p,v)(x, y) dx dy + I r jlP,O)(x, Y'j) g(P,O)(x, Yi) dx
a C j:o==] .. a

V a
+ L f j(O,P)(xi , y) g(O,p)(Xi , y) dy (6.2)

i=l c

where the Xi and Yi are chosen so that (Xi, Yi) EPA!, 1 ,,;; i,j ,,;; p. We complete
RP'P with respect to (6.1) to obtain a Hilbert space R~'P having the same
properties as the Hilbert space of Section 3 except for minor changes caused
by the fact that the single integrals in (6.2) are different from those in (3.5).

We define the class of functions &ltp,p having properties analogous to the
class of functions LP, P of Section 4 with minor modifications dictated by the
changed inner product for R~'p. The idea behind our particular choice of the
class of functions illP , p is that we will want to define an extension map E on
functions in g{P,P, which is similar to what was done in the case of the
L-shaped region L, with the property that E[,qlP.P] C R~'p.

Let E be the linear map on 2ll P , P given by

Ifon 2ll
Ef == IVf on R\,ql (6.3)

where V is a linear map with the property that E[illM ] C R~'p. Note that
this requires

i = O, ... ,p - 1,

on 8211 n o(R\~), where %n denotes the normal derivative. On 2llP ,P we
define the inner product

(f, g)* = (Ef, Eg). (6.4)

We say that E defines a minimal extension of illP,P if its left inverse F defined by

Ff= FIM
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is norm reducing. The author suspects that for all rectangular polygons the
minimal extension E just defined is unique. We shall give examples of minimal
extensions for several regions but first we show how the idea of a minimal
extension can be used to define a linear projector with range S2P(Jlt, 17") where
17" denotes a rectangular mesh defined on R which contains the lines ;\" = Xi ,

i = 1, ... , p, and .r = Yj, j = 1,... , p. We make the additional assumptiorl
that dim S2P(~, 77") :s;; dim S2 P(R, 77"). See [6], Section 3 for a discussion of
this restriction. OUf construction parallels that for the projector r;:,L .

By construction .'YlP, p is a Hilbert space \vith respect to the inner product
(6.4), Let m = dim S2P(,:;lt, 77"). We want to determine 111 linear functionals on
[jfP,P with the property that their representers span 5 21'(.3£, 77"). Let E be a
minimal extension. Let Q be the linear projector on R~'P with range E[a'P'!']
defined by

Q =EF.

Then as F is norm reducing and E is norm preserving, Q is the orthogonal
projector onto E[~P,P], Let A be a bounded linear functional on Rt j

, v'iith
representer ef;. Then AE is a bounded linear functional on ;]f,P,lJ• LetfE ;liP' I',

then
I\EI = '\£(FE)1 = AQEf = (QEf, ef;)

= (Ef Qef;) = (Ef E(F4») = (f, Fef;)", . (6.5)

Therefore it is sufficient to choose m linearly independent functionals {'uJk'
from the set

{AE I A EA}

where il is the set of linear functionals on R~'P whose representers are in
S2 P(R, 77"). Applying Lemma 1 once more the linear projection 1':'!YIf of
fE gJP,v onto S2P(31, 77") determined by the {,uiY{' uniquely minimizes [1.', i'J',
[EI.', Ee] among all 17 EO /!ll P, P satisfying

i = 1,...,m.
As an illustration we first consider the U-shaped regIOn U of Fig. 2.

d

I 1

f3 ---~

c
a °1 \12 b

FIGURE 2
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We assume that the points {XiH.' are all contained in [a, CXI] U [CX2' b] and that
the points {Yj}f are all contained in the interval [e, ,8]. Let Vbe the linear map
given by

where H~l'~2'P g is the Hermite intepolating polynomial of degree 2p - I
interpolating g E C(P-I)[CXl , CX2] at CXI and CX2 • By Theorem 3 of [7], Vfwith V
given by (6.6) minimizes

.~2 fdJ [v(p,p)(x, y)]2 dx dy
~l fJ

among all functions v E RP,P satisfying

aiv 8ij
ani oni '

i = O, .•"p - 1.

on oU n o(R\U). Thus the left inverse F of the extension E with V given by
(6.6) is norm reducing and thus E is a minimal extension of UP,lJ to R~p.

Note that if any of the {x;}i are chosen to be in the interval (CXI , CX2), the
determination of the minimal extension is considerably more difficult since
then some of the single integrals in the inner product (Ef, Ef) will depend
upon Vi In fact, the author does not know how to determine the minimal
extension in this case. As an example of a rectangular polygon where this
type of complication is unavoidable, consider Fig. 3.

dn -----
I

ct==U
a b

FIGURE 3

d

{32

{31-

C L---L_~--I

a Q1 Q 2 b

FIGURE 4
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We consider one final example which illustrates the way to find the minimal
extension in a case where R/3l is not a rectangle or a disjoint set of rectangles
as is the case for a T- or H-shaped region. (The determination of the minimal
extension for these two regions is essentially the same as for an L or U-shaped
region.) Let :JI[ be the rectangular polygon of Fig. 4. We assume that t!:Ie
points {5~)r are chosen to lie in the interval [a, 0:1] and that the {)I;}f a:e
chosen to lie in the interval [c, f31]' Let V be the linear map given by

Vf=

Then as the extension map E with V given by (6.7) has the property that
E[&P-P] C R~'P and

J'f [( v:f)(P,P)(x, y)]2 dx dy = O.
'R\,)l

E must be a minimal extension for the region J1t of Fig. 4.
Nore that the map E is already becoming quite complicated and likewise

the linear functionals used to define the linear projector I:..?I . Thus the author
concludes that the variational approach to defining splines is of pracricai
value only in the case of simple rectangular polygons.
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