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1. INTRODUCTION

Let oria = x, <<x; <+ <Xy =250 be a partition of the interval
I, = la, B). For p > 1, let S??(I,, =) be the set of polynomial splines of
degree 2p — 1 defined on =7y . Let F'P[a, 8] = {f | f*»~ is abs. cont.,
f e [2a b]} and let 17 denote the linear projector on FiPfg, b] which
associates with each fe F‘i‘”[a b} the unique element I7f of S*7(J, 7}

satisfying

(I.i)lf)(xl) - f(xi)a I - 0:"‘7 *]l”!a

{1.1;
W) = O, i=0M:  j=0..p— 1L
It is well known [4] that 17 f uniquely minimizes
b
J [P dx ¢z
among all v € F?[a, b] satisfying
v(x) = f(x,), i=0,., M,
1.3

vx;) = f9xy), i=0,M, j=0..,p—1L

Let Rbetherectangle /; X I, = [0, 8] X [e,d]and ket m = =, X mybea
partition of R into subrectangles. The previous result can be extended by
tensor products obtaining a linear projector I?? with range

SEAR, my = S*(I; , m) @ 52y, my)

having the property that the spline interpolant determined by this projecior
can be characterized by variational properties.
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100 LOIS MANSFIELD

Let L be the L-shaped region shown below and let C-*(L) be the class of
all functions f'defined on L with f%7 continuouson L,0 << i < r,0 <j < s,
where the superscripts indicate partial derivatives. Let S??(L, =) denote the

d

subspace of piecewise polynomials, or splines, on = which are of degree
2p — 1 in both variables and which belong to the class C2»—222-2([) The
purpose of this paper is to determine a linear interpolation projector /7 ; onto
S22(L, ) having the property that the spline interpolant determined by this
projector can be characterized by variational properties, thus providing an
extension of the univariate result to L-shaped regions. This extension is
achieved by noting that spline functions are representers of appropriate
bounded linear functionals in an appropriate Hilbert space. It also depends
in an essential way on the extension by tensor products of the univariate
result to rectangles. Our construction of the projector I?; provides an
indication of how to proceed in the case of a more general rectangular
polygon # to determine a spline interpolant which can be characterized by
variational properties. We include an outline of this extension in Section 6.

The problem solved in this paper has also been considered in [2] and [6].
The authors of [2] were not able to find a linear interpolation projector onto
S22(L, 7). The authors of [6] succeeded in finding such a projector, which is
in fact simpler than the one determined here. However, the interpolation
scheme determined by their projector [6, Theorem 3} is unstable in the sense
that spline interpolants to a smooth function need not converge as the mesh =
is successively refined. For the bicubic case the authors of [6] succeeded
[6, Theorem 9] in determining a stable interpolation scheme on an L-shaped
region but their scheme is ad hoc in the sense that it seems to provide no
indication of how to proceed to determine stable interpolation schemes for
higher degree splines or for other rectangular polygons.

It also would not appear that the spline interpolants defined in [6] can be
characterized by variational properties. In this author’s opinion, the
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minimization property is an important property of odd-degree interpolatory
splines of one variable and should be preserved in any extension of the theory
of these splines to more than one variable. For example, the minimization
property for univariate splines immediately implies a best approximation
property from which one can prove the uniform f‘onvergence of interpelatory
splines of degree 2p — 1 and their first p — 1 derivatives 1o moderately
smooth functions. (See [1, Theorem 5.9.2].) As will be seen, the minimization
properties obtained for spline interpolation on the rectangle and the L-shaped
region also immediately imply best approximation properties from which
one obtains analogous convergence results. (See [9, Theorem 51}

We shall find it convenient to adopt a standard notation to use when
referring to linear functionals associated with interpolation t¢ derivative datz.
We shall denote by 8% the rule which assigns the value fY(«) to the function
fe CUIT where [ is the interval of the real line indicated by the context. For
7 = 0, we shall usually omit the superscript.

2. SPLINES AS REPRESENTERS OF BoOUNDED LINEaAR FUNCTIONALS
IN HILBERT SPACE

In {5], de Boor and Lynch give general results concerning representers of
bounded linear functionals in Hilbert space. We restate some of their resulis
in the following

LemMma 1. Let H be a real Hilbert space. iet F,, i = 1,. be an

Iinearly independent set of n bounded linear functionals de ﬁned or H. Let &,

be the represenier of Fy, i = .., n, ie, F:f ={(f, ¢ for fe H, and let
=Py seey Ppr. Forfe Hlet Psf be the orthogonal projection of fonte S. Then

(i) st is the unique element of S which interpolates [ with respect to the
FLi=1,..,n;

(il of all elements ge H such that F; g = F.f, i = 1,...,n, Psf has the
ininisum nori.

We would like to relate the variational property of odd degree interpolatory
splines to Lemma 1. To do this we define an inner product -, -, on F'¥i{g, b]
having the property that minimizing {z, v»; over all 2 € W, , where W} is the
set of all v € F(P[q, b] satisfying (1.3), is equivalent to minimizing (1.2) over
all v € W, . The inner product

Ny
o

hgn = [ 190 90 dx + 3 79(a) 9@ (

j<p
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has this property, and as was shown in [5], F?[a, b] is a Hilbert space with
respect to (2.1). Let S; be the subspace of representers with respect to (2.1)
of the linear functionals

Ay = 8,30 0 (8t U (8, 2.2)

By Lemma 1, the orthogonal projection Py fof f € F*'[a, b] onto S, minimizes
{v, t»1, or equivalently (1.2), among all v € W,. Thus Ps, f= I,f’l f. This
together with the fact that dim S$22([;, m) = dim S; implies that
S; = S?2(1, , 7)), i.e., the subspace of representers S; is identical to the
subspace of splines S2?(f; , 7r;). This observation will be important in the
extension of these results to rectangular polygons.

3. EXTENSION BY TENSOR PRODUCTS TO RECTANGLES

Let R=I5L X I, =a, b] X [c,d]. We define a norm on R»? =
FP g, b] ® F®[c, d] and then complete R#? with respect to this norm to
obtain a Hilbert space. First, F*?[c, d] is a Hilbert space with respect to the
inner product

{f; 82 = fcdf D(y) g (¥ dy + 3, fUc) g9 c). 3.

i<p
For fe R?-#, we have the expansion
P

Jx, 1) = (Tap @ Top) [, ) + (L — Ty, ) ® Te, ) flx, ¥) (3.2)
F [Too @A — T )1 fG6, ) + [ — To,p) @ (A — T )] fx, )

where T, , is the linear projector onto #,_, , the space of polynomials of
degree p — 1 or less, defined by

Tap = T (0@ (F5%)) (33)
and T, , is defined similarly. Thus
(8 = g1+ T 3 f9a0)8"9(a, ) (34
where o
el = [ [ Fone g yydeds + T [ 10008096 0
+ 3 [ 199, 3) g59(a, y) dy. (3.9

<p®C
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is an inner product on R?-?. Note that [f, /12 is a seminorm with null space
Py & F, 1. In[8]itis shown that the completion RZ? of R¥" with respect
to (3.4} is the class of functions with the properties:

f@heClRrl, i<p, j<p,
§P 1.9 i abs. cont., §FOP e LUa B, =0, p— L,
8i0F @2 is abs. cont,, 87F " e L, dl, i =0..p—1,

J-le-1 g abs. cont., %P e LZ[R].

For the partitions mia = x5 << Xy < = <Xy =0 and myi ¢ =3y <
¥ < - < yw = d, we consider the set of linear functionals /1 defined by

={AQpulrcd ,ped}

where /1, is the set of linear functionals on F*'[q, b] defined by (2.2) and 4, is
the set of linear functionals on FP)[¢, d] defined by

.
oy
CJ\

Ay = (8,35 U B U (B 37

With o = m; & my, let 172 = I7 ® I bethelinear projector onto S*2(R, )
where /7 is the linear projector ‘onto SZP(I my) defined by (1.1) and 77 is
defined similarly. We remark that the spline interpolant determined by 732 is
just the bicubic spline of [3].

TueorReM 1. Let f€ R{7 and let
I={veRZ?| v = M all N d}.

Then I uniquely minimizes [v, v] among all ve I

Proof. First we note that because of the structure of the inner product
(3.4) minimizing [z, v] among all ve I' is equivalent to minimizing {¢, ¢
among all e I'. By Lemma 1, the function that minimizes (v, v) among all
v € I' is the unique element in S, the subspace spanned by the representers of
the set /, which belongs to I'. Let A = A, & A, €21 and suppose ¢ is the
representer of A with respect to (3.4), ¢, is the representer of A; with respect
to (2.1), and ¢, is the respresenter of X, with respect to (3.1}. Then for ali
fe Rov

’\f: )\1@2 f) = <)\2f: ¢1>1 = <<fa ¢2,\/2(y) P (,51>1 - (fs ¢1¢_)

where the subscript indicates that the inner product is taken with respect to 3
for fixed x. But since R”? is dense in REZ?, Af = (f, ¢1¢,) holds for all

FeRE” and ¢ = ¢y,
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This, together with the discussion following Lemma 1, 1mphes that
S = S??(R, m) and the theorem is proved.

Remark. The inner product (2.1) is not the only inner product involving

mef”"(x) g P(x) dx

which can be defined on the linear space F'#'[q, b] to make it a Hilbert space.

Clearly the set of functionals {8{}5~" in the finite sum can be replaced by any
subset {G}? of A;, which are linearly independent over #,_,. This
replacement in (2.1) has no effect on the variational problem which character-
izes [7 g, g € FPa, b]. It does, however, affect the variational problem of
Theorem 1 in that the substitution of {G )} for {8!"}51 results in a change in
[v, ©]. Thus I7°%f, fe R%:?, can be characterized by a finite set of similar
variational problems.

4. EXTENSION TO L-SHAPED REGIONS

Let L be the L-shaped region of Fig. 1. Let L?-? be the class of functions
with the properties
fereCll], i<p, j<p
8PF @Y is abs. cont., 87f Y e L¥a,b], j=0.,p— L, @1)
§Df0.71 g abs. cont., 7P e 12, d], i=0,.,p—1,
f#-12-1) g abs. cont. on R;, f'7P e [3[R/], i=1,2,3.
where Rl = [a: 0‘] ® [B, d]p R2 = [an O“’] ® [C, 18]> RS = [O‘s b] ® [C, ﬁ]'

We now show that L?-? is a Hilbert space with respect to the inner product
(8 = U8l + X Y f4a, ¢) g a, c) (4.2)
<P j<p
where

gl = [ [700e ) gooceyydvdy + 3 [ 1m0, 0 g, 0 ds

a
+ ¥ [ 9, ) g7, y) dy. (43)
i<p ™o
With
T = Ty @D+ (1 © Ty.) — Ty @ Ts.0) 44
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the “blend” of 7, , with 7; , , we define the map £ on L2 by

,_(foni, e
£ {Tfon R\L. (4.5}

Since for all fe LP?

(TH e, p) = [T, p), O0<i<ip—1,  yelpdi
0 <y

(THx, By = f7x, B),

EfieleCIR], i <p, j<p and E has range in RE?. Note that 77 is an
example of a blended interpolant introduced by Gordon [7]. Since (Ef)»? =
on R\Z, (4.2} is an inner product on L?-?, Hence F is a linear, inner produc
preserving map having as a left inverse the linear and norm reducing map
given by

J<p—1 x €l bl

er O

5|

Ff:bf‘]_.

Therefore L7# is a Hilbert space with respect to (4.2}, L## being isomorphic
to the closed subspace E[L?*] of RZ*.

Our objective is to find a set .4 of linear functionals with the property that
the linear projector I? ; onto S?#(L, m) determined by .4 has the property
that for fe L7, I?; f uniquely minimizes [v, v}, among all v € L™? satisfying

p = uf, all ped.

Here = denotes the restriction of the partition =; & =, 10 L. We assume
o = xp; and 8= xy, . In [6] it is shown that

dimSHL, M) =m =K+ 2p — )M+ N-L2) ~4(p — 1P {46

where Kis the total number of mesh points. Lemma I shows that it is sufficient
to choose m linear functionals defined on L?'? with the property that their
representers span S2(L, ).

Let A be a bounded linear functional on RZ'? with represeater ¢. Then AZL
a linear functional on L?-7. In addition

QEY = MEf) = (B §) = (. $ 10, all felnr. (@7
Thus AE has representer ¢ |, . This implies that the set of functionals
Ap ={AEXed} (4.8}

all have their representers in S??(L, w). We choose .# to be a subset of m
elements of Az whose representers span S*#(L, 7); or what is the same thing,
a subset of m elements of Az which are linearly independent over L7:2,
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Let Q be the linear projector on R%? with range E[L? 7] defined by
Q = EF.

As Q is also norm reducing, Q is in fact the orthogonal projector of RZ'? onto
E[L?-?]. The set of linear functionals

My = ME|Xedand 2Q = A} (4.9)

is clearly linearly independent over L# 7, The set .4, includes the functionals
associated with: (i) interpolation to values at each mesh point of Z; (ii) inter-
polation to the first p — 1 normal derivatives at each boundary mesh point
of L which is also on the boundary of R; and (iii) interpolation to cross-
derivatives at the three corners of L which are also corners of R.

Now Iet A’ be the subset of /1 containing the functionals

8 ®8,,, i=l.,p—1; Jj=N+1..,N,
8, ®8, i=Mi+ L., M  j=l.,p—1, (410
P2®8Y, i=1,.,p—1; j=1,.,p—1.
‘We take as the remaining functionals
Ay = INE | Ae A7, (4.11)
It is straightforward to check that the set of m elements of /1
M= MT My 4.12)

is linearly independent over L?-?,
This proves

THEOREM 2. There exists a linear projector I ; on L?? with range S**(L, )
which associates with each fe L?* the unique element I?,f in S*(L, m)
satisfying

W) = pfs  all pet
where A is the set of linear functionals defined by (4.12). Moreover, If .f
uniquely minimizes [v, v], among all

vel = {vel??|uw = uf, all pe A}

We conclude this section with the remark that if the functionals {812,
(or {8Y"}Y), are replaced in (2.1) and (4.2) by the set {G;}?, ({G,}?), where
{G)? , ({G;}D), is any subset of p linear functionals of the set {812~ U G e
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b
[

ety {8, }1), which are linearly independent over 2,_; , the methods
of this section give the same linear projector 77 ; . Thus the spline interpolant
17,7, like I*f on the rectangle, is actually characterized by a finite set of
similar variational problems.

5. ReMARKS ON THE CALCULATION OF i7,f

The linear projector /2 ; of Theorem 2 is given by {s,}1" and {;}1 where {5}
is any basis for 522(L, #) and {u,}]" is any set of m functionals which span ,//,:,
e, for any fe L»?, I?, f can be determined by solving the linear system

"

z."“z = p.f, i=1,.,n.

The purpose of this section is to replace the complicated set of functionals .4
by a simpler set .#,’ so that .# is spanned by the set .4, U .#/,". For clarity
we restrict ourselves to the bicubic case ( p = 2). Similar simplifications can
be made for general p.

We first replace (8{" ® §Z,k)E by

w7 = 00 ®3E — (5 — PO B 3NE — 37 © 5,

k= Nl - ’1..”, N.
Thus the u;* are defined by

wtf = [N o, y) — fE0a, B) — fOV(a, D)3 — B

all fel®»» f =N, -1,., 1} 5.5

<L

=4

With gy, = Mﬁl and ;% == u® — pi_y, kK = N, + 2,.., N, we finally
obtain the set {ix*}}, - Where 3, is given by
Bl = FO0(, 1) — OO yia) = (e~ a) FO0, ),
all felr? k=N +1,.,N (&

Lh
2
R

Analogously we obtain the set { ﬁ,ﬁ}}.‘} 41 where 7,7 is given by

g = OV, , B) — fOV 0o, B) — (xx — xp) F55(5, B,

all fel»? k=M, --1i..,58 {53
We take .#;' to be the set
//1’ = {ﬁ'ka}f’\\{l+1 U {ﬁks}%lﬂ U {Hu} i54}
where g, = (8 ® S{V)E is given by
pof = fOD(b, B) + fOV(w, d) — fAU(, B),  all felrw,

~~
(=4
)
o’
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6. EXTENSION TO GENERAL RECTANGULAR POLYGONS

Let # be a rectangular polygon contained in the rectangle R =
{a, b] X [c, d1. In this section it will be convenient to define a slightly different
inner product on R?:? than was used in Section 3. On R?-? we define the inner
product

(h8) = hel+ ¥ Y [, 79) g, ) ©.1)
i=1 j=1
where
b ~d ) b
gl = [ [ FoP00y) P,y dxdy + 3 [ F00x ) g70(x, 5,) dx
a Ve j=1%a
£d d
+ X [ SO ) 80P y) dy 62)

i=1vc

where the X; and y; are chosen so that (X, , 7)) e %, 1 < i,j < p. We complete
R?-? with respect to (6.1) to obtain a Hilbert space RZ? having the same
properties as the Hilbert space of Section 3 except for minor changes caused
by the fact that the single integrals in (6.2) are different from those in (3.5).

We define the class of functions Z?-* having properties analogous to the
class of functions L?-? of Section 4 with minor modifications dictated by the
changed inner product for R2*. The idea behind our particular choice of the
class of functions ##-? is that we will want to define an extension map £ on
functions in #*-?, which is similar to what was done in the case of the
I-shaped region L, with the property that E[#7 7] C RZ?.

Let E be the lincar map on #ZF-? given by

{fonZ

= vfon 2 63

where V is a linear map with the property that E[#?»]C REZ®. Note that
this requires

oy &f -
T Tt i=0,..,p—1,

on &% N o(R\%), where 8/on denotes the normal derivative. On %77 we
define the inner product

(f> &)« = (Ef, EQ). (6.4)
We say that E defines a minimal extension of 77 if its left inverse F defined by

Ff=Flg
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is norm reducing. The author suspects that for ail rectangular polygons the
minimali extension E just defined is unique. We shall give examples of minimal
extensions for several regions but first we show how the idea of 2 minimal
extension can be used to define a linear projector with range S*(Z%, =) where
7 denotes a rectangular mesh defined on R which contains the lines x = X;,
i= l,..,p, and ¥y = ¥;, j = l,..., p. We make the additional assumption
that dim S?#(Z%, =) < dim S??(R, 7). See [6], Section 3 for a discussion of
this restriction. Our construction parallels that for the projector £7 .

By construction #7-? is a Hilbert space with respect to the inner product
(6.4). Let m = dim S?2%(Z, 7). We want to determine s linear functionals on
o7 with the property that their representers span S*#(#, 7). Let F be &
minimal extension. Let @ be the linear projector on RL? with range Ej#Y-¢]
defined by

Q = EF.

Then as £ is norm reducing and £ is norm preserving, ¢ is the orthogonal
projector onto E[Z77]. Let A be a bounded linear functional on R2" with
representer ¢. Then AE is a bounded linear functional on #7-?. Let f e %%+,
then
AEf = AE(FE)f = AQEf = (QFf, ¢)
= (Ef. Q) = (Ef, E(FD)) = (/, F) . (6.5;

Therefore it is sufficient to choose m linearly indevendent functionals 1"1,6-"‘2‘“
J + [t PN
from the set

DE|Aed)

where /1 is the set of linear functionals on R%? whose representers are in
S22(R, m). Applying Lemma 1 once more the linear projection IP,f of
fe #»7 onte 527(K, w) determined by the {;}} uniquely minimizes (¢, ¢}, =
[Ee, Ev] among all v € #7-? satisfying

pv = pf, i=1,..,m.

As an illustration we first consider the U-shaped regien U of Fig. 2.

" )
|
(
|

B_._._._

FIGURE 2
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We assume that the points {X;}] are all contained in [a, ;] U [2, , 6] and that
the points { y;}¥ are all contained in the interval [¢, 8]. Let V be the linear map
given by

V= (Haypao @ 1)+ (1 & Tp,5) — (Hayap0 @ T5,5) (6.6)
where H, . ., & is the Hermite intepolating polynomial of degree 2p — 1

interpolating g € C**~ Vo, , o) at @, and a, . By Theorem 3 of [7], ¥f with VV
given by (6.6) minimizes

X 0
[ ] e, ) dx dy
oy “B

among all functions v € R?? satisfying

oy O

ot~ omt’

i = Qu,p— 1.

on &U N &(R\U). Thus the left inverse F of the extension £ with V given by
(6.6) is norm reducing and thus E is a minimal extension of U?-? to RZ?.

Note that if any of the {X;}{ are chosen to be in the interval (v, , ay), the
determination of the minimal extension is considerably more difficult since
then some of the single integrals in the inner product (Ef, Ef) will depend
upon Vf. In fact, the author does not know how to determine the minimal
extension in this case. As an example of a rectangular polygon where this
type of complication is unavoidable, consider Fig. 3.

d— ————
C b __ |
a b
FIGURE 3
A
B | LA
Ry
B1 - R
c | |

a a a, b

FIGURE 4
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We consider one final example which illustrates the way to find the minima!
extension in a case where R/Z is not a rectangle or a disjoint set of rectangles
as is the case for a T- or H-shaped region. (The determination of the minimai
extension for these two regions is essentially the same as for an L or U-shaped
region.) Let # be the rectangular polygon of Fig. 4. We assume that the
points {X;}¥ are chosen to lie in the interval [a, o;] and that the { F;}¥ are

chosen to lie in the interval {c. 8,]. Let ¥ be the linear map given by
Tlf - (—‘x,p e i)fJf (1 @Tﬁl,p)f—(zﬂ\x.l,p@z 1p/j IIR
Vi=({Tof =1, ,@DfF(UE = (7., ® T3, 5/ on Rs,

of = (T, QDT+ A QD) Iif — (1,, @ T, ) on

i,
'
)
'J_J

3
)

(

o~
CJ'\

h

Then as the extension map £ with V given by {6.7
E{#?r]C RE? and

has the property that

I, e pE dx dy = o

E must be a minimal extension for the region # of Fig. 4.

Note that the map £ is already becoming quite complicated and likewise
the linear functionals used to define the linear projector 17 5» . Thus the author
concludes that the variational approach to defining splines is of practical
value only in the case of simple rectangular polygons,
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